

Preliminary/Contract Design

ONR - NAVSEA - OSD CREATE SHIP DESIGN WORKSHOP March 31, 2009

Andy Summers
NAVSEA 05D
DDG 1000 Ship Design Manager
Naval Sea Systems Command

<u>Distribution Statement A</u>: Approved for Public Release; Distribution Unlimited (4/27/2009). This Brief is provided for Information Only and does not constitute a commitment on behalf of the U.S. government to provide additional information and / or sale of the system.

Proposed Implementation of SECNAVINST 5000.2D PASS 2: PROGRAM OFFICE LEAD

Design Stages and Expectations

Preliminary Design

- Demonstrate design is balanced using physics based modeling
- Ensure design is robust to potential disturbances caused by realized risks
- Design is producible within the context of a given build strategy
- Execute Risk Mitigation Plans

Contract Design

- Continue to ensure design is balanced using physics based modeling.
- Adjust design in response to problems (i.e. realized risks) and adjustments in the build strategy.
- Ensure design is to the level of fidelity such that any remaining degrees of freedom within one construction unit do not impact other construction units.
- Execute Risk Mitigation Plans.
- Translate Design into a contract package

Detail Design

- Adjust design in response to problems and the particular build strategy of the shipyard.
- Produce drawings and products to support material procurement and fabricating construction units.
- Use physics based modeling as needed to confirm that the design meets requirements.

Mar 2009

Design Methods and Design Stages

DDG 1000 Physical Design

Characteristics

Length	600 ft	Displacement	14,564 LT
Beam	80.7 ft	Installed Power	78 MW
Draft	27.6 ft	Crew Size	142
Speed	30 kt	(incl. Aviation de	etachment)

Sensors

Dual Band Radar (DBR)

- S-Band Volume Search Radar (VSR)
- · X-Band Multi-Function Radar (MFR)

HF & MF Bow Sonar Arrays

Multi-Function Towed Array

EO/IR System

ES System

Superstructure

Composite structure

Weapons

- (80) Advanced vertical launch (AVLS) cells for Tomahawk, ESSM, Standard Missile
- (2) Advanced Gun System (AGS) 155 mm guns
- (600) 155 mm rounds
- (2) 57 mm Close In Guns (CIGS)

Torpedo Defense (Space Reservation)

Anti-Terrorism (Space Reservation)

Aviation

MH60R and (3) VTUAVs

Integrated Power System (IPS) (Capacity for 2 MH 60Rs)

- (2) Main Turbine Generators (MTG)
- (2) Auxiliary Turbine Generators (ATG)
- (2) 34.6 MW Advanced Induction Motors Integrated Fight Through Power

Boats

(2) 7m RHIBs (sized for (2) 11m RHIBs)

Hull

Wave-piercing tumblehome

DDG 1000 Program Schedule

DDG 1000 / DDG 51 Flight IIA Comparison

DDG 1000

Displacement 14,564 LT

Length / Beam 600 ft / 80.7 ft

Draft 28 ft **Crew Size** 142

Flight Deck 150 ft x 51 ft

Freeboard 22 ft

DDG 79

Displacement 9,217 LT Length / Beam 509 ft / 67 ft

Draft 31 ft **Crew Size** 382

71 ft x 57 ft (fwd) 44 ft (aft) Flight Deck

Freeboard

at hangar at transom 13 ft 16 ft

DDG 1000 Critical Technologies

Infrared Mockups (IR)

- Land-based suppressor testing complete
- At-sea panel testing complete

Integrated Composite Deckhouse & Apertures (IDHA)

- RCS testing complete
- Co-site testing complete

Advanced Gun System (AGS)

- · Initial guided flight testing complete
- Land-based testing complete

Peripheral Vertical Launch System (PVLS) / Advanced VLS

- Two detonation tests conducted
- Missile restrained firing testing complete

Dual Band Radar (DBR)

- MFR sea-based testing complete
- VSR final land based assembly complete

Small Boat Demo

Integrated Power System (IPS)

- Component factory testing complete
- **Critical Test Parameters** (CTPs) complete

Autonomic Fire Suppression System (AFSS)

 At-sea weapons effect and autonomic fire suppression testing demonstrated

Total Ship Computing Environment (TSCE)

- Software Releases 1, 2, and 3 successfully coded, tested, and authorized by the Government
- Release 4 coding in progress

Hull Form Scale Model

Performance validated by model testing **UNDEX** testing

Integrated Undersea Warfare (IUSW)

- At-sea mine avoidance testing complete
- **Automation testing** complete

Advanced Gun System (AGS) & Magazine

Accomplishments

- Component testing to validate design
 - Gun and Magazine single axis testing (SAT), multi-axis testing (MAT), and factory acceptance testing (FAT) complete
- Gun mount and magazine integrated testing at Dugway, UT Land-Based Test Site
 - Verified maximum rate of fire of 10 rounds per minute
 - Verified maximum rate of fire in 8-round bursts
 - Verified magazine capable of unloading all 8 complete rounds from pallet in 45 seconds or less

Design Work Split – BIW and NGSS

- BIW and NGSS have split the ship geometrically by design zone
- NGSS is responsible for Areas 2 and 4
- BIW is responsible for Areas 1 and 3

3-D Zone Design

For each zone includes:

- 3-D modeling and final design of structure
- Equipment arrangements and foundation design
- · Distributive systems design and routing

- Three dimensional Computer-Aided Design (CAD) tool
 - Tool integrates all hull, mechanical, electrical / electronic systems
 - Facilitates use of common parts and material
- Common repository for all design data with Interface to TeamCenter
- Common database for interference and penetration management
- Anticipate significant reduction in Type II changes as a result of a robust Design / Build process and a mature tool set

Mar 2009 10